

PRACTICE EXAM ARCHITECT REGISTRATION EXAMINATION® 5.0

Project Planning and Design division

For use by supervisors and mentors.

Licensure candidates should access the free practice exams through their NCARB Record.

ARE® LICENSE

The Architect Registration Examination (ARE) 5.0 Practice Exams ("Materials") are made available by the National Council of Architectural Registration Boards ("NCARB") in accordance with the following terms and conditions ("Agreement").

- 1. LICENSE GRANT. Conditioned on continued compliance with this Agreement, NCARB provides each individual person (identified herein as "you" or with "your), and whether an individual person or an individual person using pursuant to a license to an individual entity, with a revocable, personal, limited, non-exclusive, non-transferable, and non-sublicensable license to use the Materials solely for educational purposes in connection with (assisted) study and preparation for the Architect Registration Examination[®] ("ARE[®]"). This license permits you to create printouts or output from the Materials and discuss these works in public or private settings but only in accordance with this Agreement.
- 2. LICENSE GRANT RESTRICTIONS. The Materials are not intended to contain any questions currently in use in the ARE®. Consequently, no rights are granted under this Agreement to any questions or materials currently in use in the ARE®. All use is limited to the Materials (in the form and format) as made available by NCARB. Except as provided above, you may not modify, alter, recompile, reassemble, translate, create derivative work(s) of, distribute, publish, license, sub-license, transfer, sell, rent, timeshare, outsource, provide on a service bureau basis, lease, grant a security interest in, assign or transfer any right(s) in, or otherwise use in any manner not expressly permitted herein the Materials or any part thereof. In addition, you may not remove or alter any proprietary notice on the Materials or use any portion of the Materials independently from the Materials as a whole or for purposes other than as expressly permitted herein. All rights not expressly granted to you herein are hereby reserved to NCARB.
- **3. USER OBLIGATIONS.** You represent that you are of the legal age to create a binding agreement with NCARB and agree to abide by all applicable local, state, national, and international laws and regulations with respect to your use of the Materials. You also agree to assume all responsibility concerning your use of the Materials.
- 4. PROPRIETARY RIGHTS. Any rights granted hereby are licensed and not sold or otherwise transferred or assigned to you or any third party. NCARB shall retain all ownership right, title, and interest in and to the Materials. Unless otherwise noted, the Materials are Copyright © 2025 The National Council of Architectural Registration Boards. All rights reserved. NCARB, ARE®, ARCHITECT REGISTRATION EXAMINATION, and all other names, logos, and icons identifying NCARB and its programs, products, and services are proprietary trademarks of NCARB, and any use of such marks, including, without limitation, as domain names, without the express written permission of NCARB is strictly prohibited. Unauthorized use of the Materials may violate intellectual property or other proprietary rights laws as well as other domestic and international laws.
- 5. FEEDBACK. NCARB welcomes your feedback and suggestions about how to improve the Materials. You agree that NCARB shall have the perpetual, royalty-free, and irrevocable right to use such feedback and suggestions in any manner it deems desirable without providing any consideration, attribution, or payment to you. You also represent and warrant that such feedback does not infringe or violate the intellectual property or proprietary rights of any third party (including, without limitation, patents, copyrights, or trademark rights) and that you have all rights necessary to convey to NCARB and enable NCARB to use such feedback.
- 6. WARRANTY DISCLAIMER. Use of the Materials is solely of your own volition and at your own risk. NCARB does not guarantee a passing score on the ARE® or similar standardized tests. NCARB ALSO MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY, COMPLETENESS, TIMELINESS, RELIABILITY, LEGALITY, OR ACCURACY OF THE MATERIALS FOR ANY PURPOSE. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ALL IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NON-INFRINGEMENT AS WELL AS ANY WARRANTY RELATED TO THE USE, OR THE RESULTS

OF THE USE, OF THE MATERIALS OR ANY DOCUMENTATION ASSOCIATED THEREWITH. NCARB may make modifications and/or changes to the materials at any time and for any reason.

- 7. LIMITATION OF LIABILITY. YOU AGREE THAT IN NO EVENT SHALL NCARB BE LIABLE FOR ANY INDIRECT, PUNITIVE, INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN ANY WAY CONNECTED WITH THE USE OF THE MATERIALS BY YOU OR ANYONE ELSE, WHETHER BASED IN CONTRACT, TORT, STRICT LIABILITY, OR OTHERWISE, EVEN IF YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. WITHOUT LIMITATION OF THE FOREGOING, THE TOTAL LIABILITY OF NCARB FOR ANY REASON WHATSOEVER RELATED TO USE OF THE MATERIALS, INCLUDING FOR ANY CLAIMS RELATING TO THIS AGREEMENT, SHALL NOT EXCEED \$100 (USD).
- 8. INDEMNITY. You agree to defend, indemnify, and hold harmless NCARB and its affiliates, employees, licensors, agents, directors, officers, partners, representatives, shareholders, attorneys, predecessors, successors, and assigns from and against any and all claims, proceedings, damages, injuries, liabilities, losses, costs, and expenses (including reasonable attorneys' fees and litigation expenses) relating to or arising from your use of the Materials and any breach by you of this Agreement.
- 9. GOVERNING LAW. This Agreement has been made in and will be construed and enforced solely in accordance with the laws of the District of Columbia as applied to agreements entered into and completely performed in the District of Columbia. Any action to enforce this Agreement will be brought solely in the federal or local courts in the District of Columbia, U.S.A., and you and NCARB expressly agree to be subject to the jurisdiction of such courts. You also agree that because there is no adequate remedy at law, NCARB shall be entitled to equitable relief in the courts of the District of Columbia, including injunctive relief, in the event of any breach or threatened breach of the provisions of this Agreement, and you shall not oppose the granting of such relief. Entitlement to equitable relief shall not be the exclusive remedy but shall be in addition to damages and all other remedies available to NCARB. If NCARB takes legal action to enforce this Agreement and is granted any material relief because of your breach, NCARB shall be entitled to reasonable attorneys' fees, expenses, and costs of litigation.
- 10. TERM AND TERMINATION. This Agreement and your right to use the Materials will take effect at the moment you install, download, access, or use the Materials, whichever occurs first, and is effective until terminated as set forth below. This Agreement will terminate automatically if you fail to comply with any of the terms and conditions described herein, including by exceeding the scope of the license. Termination or expiration of this Agreement will be effective without notice. You may also terminate at any time by ceasing to use the Materials, but all applicable provisions of this Agreement will survive termination, as outlined below. Upon termination or expiration, any right to use the Materials will immediately cease and you must return, destroy, or delete from your system all copies of the Materials (and any associated materials) in your possession. The provisions concerning NCARB's proprietary rights, indemnity, disclaimers of warranty and liability, termination, and governing law, however, will survive the termination or expiration of this Agreement for any reason.
- **11. MISCELLANEOUS.** Failure to insist on strict performance of any of the terms and conditions of this Agreement will not operate as a waiver of that or any subsequent default or failure of performance. A printed version of this Agreement and of any related notice given in electronic form shall be admissible in judicial or administrative proceedings based upon or relating to this Agreement to the same extent and subject to the same conditions as other business documents and records originally generated and maintained in printed form. No joint venture, partnership, employment, alliance, or agency relationship exists between you and NCARB as result of this Agreement or your utilization of the Materials. Moreover, you may not bind NCARB in any way or otherwise make any representations or statements for or on behalf of NCARB without NCARB's separate, express, and written permission. This Agreement represents the entire agreement between you and NCARB with respect to use of the Materials, and it supersedes all prior or contemporaneous communications and proposals, whether electronic, oral, or written, between you and NCARB with respect to the Materials. This Agreement may not be assigned or transferred by you without the prior express written consent of NCARB.

NCARB released this PDF version of the ARE Project Planning and Design division practice exam to help supervisors and mentors understand the content that exists across this division. If you are a supervisor or mentor, please use this to guide your engagements with the licensure candidates you are helping.

If you are a licensure candidate, please access the free practice exam through your NCARB Record rather than referring to this PDF version.

Note: for case study questions in this practice exam, the case study resources are not reproduced as part of this PDF for copyright and other reasons. Each case study question does identify which case study resources should be used to properly answer the question. Any licensure candidate can access the practice exam at no cost through their NCARB Record and show their supervisor/mentor the available case study resources.

Question 1

Click on the area of the site plan that is most likely to require soil stabilization.

Correct answer:

CORRECT RESPONSE

Area adjacent to building and walkway Soil reinforcement reduces erosion on steep surfaces. This area is steeply sloping and adjacent to the building and walkway. Reinforcement should be provided to reduce soil washing onto the sidewalk.

Section: Project Integration of Program & Systems

Question 2

Due to space requirements, the library area of a school must be expanded contiguously by 2,000 square feet. The client has approved the project's exterior elevations, and the architect needs to choose an expansion area that has minimal impact on the layout.

Click on the area in the floor plan to indicate where the library should expand.

<u>CORRECT RESPONSE</u> The Outdoor Courtyard area

This is correct because it is contiguous with the Library and would have minimal impact on the school layout, requiring neither revision to the design of the building facade nor the other programmed spaces.

Section: Project Integration of Program & Systems

Question 3

An architect is designing a car dealership that is surrounded by residential property on all sides. The owners of the residences are concerned about the impact of the dealership on the neighborhood. The owner of the dealership wants to deter complaints.

Which of the following should the architect consider within the design to limit nuisance complaints? Check the four that apply.

- A. Staff office locations within building
- B. Vehicle repair and operation noise
- C. Public transportation noise
- D. Site landscaping
- E. Vehicle parking
- F. Site lighting

Correct answer: BDEF

CORRECT RESPONSES

Vehicle repair and operation noise

Without a proper buffer, these noises could disturb the neighbors.

Site landscaping

Appropriate site landscaping can help with site drainage, privacy, and noise reduction.

Vehicle parking

Without a proper buffer, this could be a visual blight to the neighborhood.

Site lighting

Fixtures that are not cutoff may cast light onto neighboring property.

Section: Environmental Conditions & Context

Question 4

TABLE 1004.5

MAXIMUM FLOOR AREA ALLOW	ANCES PER OCCUPANT
FUNCTION OF SPACE	OCCUPANT LOAD FACTOR ^a
Assembly Gaming floors (keno, slots, etc.) Exhibit gallery and museum	11 gross 30 net
Assembly with fixed seats	See Section 1004.6
Assembly without fixed seats Concentrated (chairs only—not fixed) Standing space	7 net 5 net
Unconcentrated (tables and chairs)	15 net

1004.6 Fixed seating. For areas having fixed seats and aisles, the occupant load shall be determined by the number of fixed seats installed therein. The occupant load for areas in which fixed seating is not installed, such as waiting spaces, shall be determined in accordance with Section 1004.5 and added to the number of fixed seats.

Table 2902.1 MINIMUM NUMBER OF REQUIRED PLUMBING FIXTURES

DESCRIPTION	(URINALS SEE SECT	CLOSETS FION 424.2 OF THE PLUMBING CODE)	LAVATORY			
	Male	Female	Male	Female		
Coliseums, arenas, skating rinks, pools and tennis courts for indoor sporting events and activities	1,500 and 1 per 120	1 per 40 for the first 1,520 and 1 per 60 for the remainder exceeding 1,520	1 per 200	1 per 150		
parks, bleachers and grandstands for outdoor	1,500 and 1 per 120	1 per 40 for the first 1,520 and 1 per 60 for the remainder exceeding 1,520	1 per 200	1 per 150		

Refer to the exhibit.

An architect is renovating an existing sports arena. There are 52 suites on the arena's suite level at 250 square feet each. Each suite has 12 fixed seats only with views to the field below. Suites are the only spaces on this level. There are currently two female lavatories on the suite level.

How many additional female lavatories are required on the suite level?

- A. 1 lavatory
- B. 2 lavatories
- C. 3 lavatories
- D. 4 lavatories

Correct answer: A

CORRECT RESPONSE

1 lavatory

IBC Section 1004.6 states that for assembly spaces with fixed seats, the occupant load is determined by the number of fixed seats rather than occupant load factor. The occupant load must then be determined and divided by two in order to arrive at the number of females that the restroom on the sports arena's suite level will serve. Table 2902.1 is then used to determine the number of lavatories needed for the suite level's female occupants.

CALCULATIONS

1. For the occupant load: 52 (number of suites) \times 12 (number of fixed seats in each suite) = 624 occupants

2. For the number of female occupants: 624 (number of suite occupants) / 2 (even distribution between male/female occupants per code) = 312 females

3. For the lavatories needed in the sports arena's suite level female restroom: 312 / 150 (number of females for which one lavatory is required) = 2.08 lavatories; round up when determining required lavatories to 3

4. 3 (lavatories needed) - 2 (existing lavatories) = 1 additional lavatory needed

Section: Codes & Regulations

Question 5

An architect is adding a set of stairs from grade to the top landing of an existing ramp. Excluding all landings, the existing ramp is 28-feet-long and has a 1:16 slope. A survey shows no changes in grade on the site around the building. Each riser must be no more than six inches high.

How many risers should the set of stairs include?

- A. 3 risers
- B. 4 risers
- C. 5 risers

Correct answer: B

CORRECT RESPONSE 4 risers

CALCULATIONS

1. Calculate total length of ramp in inches: 28 feet (length of ramp) x 12 inches = 336 inches

- 2. Calculate rise of ramp in inches: 336 inches / 16 = 21 inches of rise
- 3. Calculate the number of risers: 21 inches / 6 inches (max riser height) = 3.5 risers, round up to 4 risers

Section: Codes & Regulations

Question 6

Refer to the exhibit.

An architect is designing a new music school with a focus on excellent acoustics. A new $8' \times 4' \times 4'$ air handling unit is to be located on the roof. The air handling unit should not be visible from the main entrance and should minimize unfavorable vibrations and noise to the spaces below.

Click on the area of the roof plan to indicate the most appropriate location for the air handling unit.

Behind parapet and above corridors and toilets between auditoriums

The air handling unit should sit above a space that is not utilized for music practice or performance. The most appropriate location for the air handling unit then is just behind the parapet, above the toilets and corridor system.

Section: Project Integration of Program & Systems

Question 7

An architect is designing a single-family house in a climate with cold winters and temperate summers. The client asks the architect to add an outdoor patio to the house for daily use and for family gatherings.

What is the most appropriate patio configuration?

- A. South-facing and using deciduous trees and low coniferous hedges to provide shelter from the wind.
- B. East-facing and using coniferous trees to provide shelter from the wind.
- C. North-facing and using the building to provide shelter from the wind.
- D. West-facing and using coniferous trees to provide shelter from the wind.

Correct answer: A

CORRECT RESPONSE

South-facing and using deciduous trees to provide shelter from the wind.

This is correct because in a climate with cold winters and temperate summers there will be little need to cool outdoor spaces, and a location on the sunny equatorial side of the building is prime. Low year-round windbreaks and deciduous trees allow the patio to still gain sun in the winter months.

Section: Project Integration of Program & Systems

Question 8

Refer to the exhibit.

An architect is designing an art studio located in the Southwest. For the interior and window configuration, the architect wants to use a wall section that allows as much daylight into the interior as possible without increasing heat gain.

Which proposed wall section should the architect select?

- A. Section A
- B. Section B
- C. Section C
- D. Section D

Correct answer: A

CORRECT RESPONSE Section A

Windows facing north will admit daylight but will not receive direct sunlight into the space. The lightshelf at the sill will reflect light upward into the space.

Section: Project Integration of Program & Systems

Question 9

A church congregation hires an architect to help them determine the feasibility of converting a retail strip mall space into a church. The space is 30'-wide and 125'-long and is in an interior location with tenants on both sides. The church congregation requests the following:

- · Natural light in the central assembly space
- Nursery space for young children
- Church office space
- Adequate restrooms

How should the architect initially determine the feasibility of the project for the purpose of building code compliance?

- A. Analyze the existing building exits and evaluate their adequacy for the new use classification.
- B. Analyze the existing roof structure to determine the potential locations for skylights.
- C. Analyze the existing parking to determine its adequacy for the new use classification.

Correct answer: A

CORRECT RESPONSE

Analyze the existing building exits and evaluate their adequacy for the new use classification. Life safety is the first charge of the architect.

Section: Project Integration of Program & Systems

Refer to the exhibit.

Which type of HVAC system is indicated in the schematic diagram?

- A. Constant air-volume
- B. Variable air-volume
- C. Terminal reheat
- D. Dual duct

Correct answer: A

CORRECT RESPONSE

Constant air-volume

The diagram depicts a single duct constant air volume system. This system delivers conditioned air at a constant temperature through a low-velocity duct system.

Section: Building Systems, Materials, & Assemblies

Question 11

				F	REQUI	RED S	SEPAR		BLE 5 N OF	occu	PANC	IES (H	IOUR	S)'						
OCCUPANCY	Α,	E	I-1*, I	-3, 1-4	ŀ	2	F	? *	F-2, 5	6-2 ⁵ , U		F-1, S-1	н	-1	н	-2	Н-3,	H-4	н	-5
	s	NS	s	NS	s	NS	s	NS	S	NS	s	NS	s	NS	S	NS	s	NS	s	NS
A, E	Ν	N	1	2	2	NP	1	2	N	1	1	2	NP	NP	3	4	2	3	2	NP
I-1ª, I-3, I-4	1	2	N	Ν	2	NP	1	NP	1	2	1	2	NP	NP	3	NP	2	NP	2	NP
I-2	2	NP	2	NP	Ν	Ν	2	NP	2	NP	2	NP	NP	NP	3	NP	2	NP	2	NP
R ^a	1	2	1	NP	2	NP	N	N	1°	2 ^c	1	2	NP	NP	3	NP	2	NP	2	NP
F-2, S-2 ^b , U	Ν	1	1	2	2	NP	1°	2°	N	N	1	2	NP	NP	3	4	2	3	2	NP
Be, F-1, M, S-1	1	2	1	2	2	NP	1	2	1	2	N	N	NP	NP	2	3	1	2	1	NP
H-1	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	NP	Ν	NP	NP	NP	NP	NP	NP	NP
H-2	3	4	3	NP	3	NP	3	NP	3	4	2	3	NP	NP	N	NP	1	NP	1	NP
H-3, H-4	2	3	2	NP	2	NP	2	NP	2	3	1	2	NP	NP	1	NP	lq	NP	1	NP
H-5	2	NP	2	NP	2	NP	2	NP	2	NP	1	NP	NP	NP	1	NP	1	NP	Ν	NP

S = Buildings equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1. NS = Buildings not equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1.

N = No separation requirement.

NP = Not Permitted.

a. See Section 420.

b. The required separation from areas used only for private or pleasure vehicles shall be reduced by 1 hour but not to less than 1 hour.

c. See Sections 406.3.2 and 406.6.4.

d. Separation is not required between occupancies of the same classification.

e. See Section 422.2 for ambulatory care facilities.

f. Occupancy separations that serve to define fire area limits established in Chapter 9 for requiring fire protection systems shall also comply with Section 707.3.10 and Table 707.3.10 in accordance with Section 901.7.

Refer to the exhibit.

An architect is working on a mixed-use mid-rise building with an automatic sprinkler system. There is a demising wall between a theater and an office space.

How many hours should the demising wall be rated?

A. 0

B. 1

C. 2

1

Correct answer: B

CORRECT RESPONSE

Using chart 508.4, a sprinkled building requires a 1 hour separation between A occupancy and B occupancy.

Section: Codes & Regulations

Question 12

A first-time developer purchases an undeveloped agricultural parcel for a new residential development. The developer asks the architect for guidance on which regulatory bodies and processes the developer must engage with initially.

What should the architect's guidance to the developer include? Check the three that apply.

- A. Schedule an historic preservation review
- B. Obtain zoning approval
- C. Record plats with the AHJ
- D. Comply with ADA standards
- E. Seek permission to subdivide
- F. Complete Fair Housing Act review

Correct answer: BCE

CORRECT RESPONSES Obtain zoning approval Zoning approval will confirm the planned use of the land and the density of the proposed development.

Record plats with the AHJ

Once final site approval is given, plats are recorded in government files and individual lots can be sold.

Seek permission to subdivide

Agricultural parcels are large pieces of land that are then subdivided into individual lots for resale. Plans are made for shared amenities, such as roads, and for bringing utilities within reach of each lot.

Section: Codes & Regulations

Question 13

Which of the following are reasons to specify floor-mounted water closets instead of wall-hung water closets in a back-to-back arrangement with an identical number of fixtures? **Check the two that apply.**

- A. Fewer cleanouts required
- B. Less sanitary/waste piping
- C. Smaller plumbing chase size
- D. Easier to clean water closet area
- E. Lower installation costs for each fixture
- F. Greater selection of fitting and piping materials

Correct answer: CE

CORRECT RESPONSES

Smaller plumbing chase size A carrier is required for wall-hung water closets and this requires a larger chase to accommodate it.

Lower installation costs for each fixture

Floor-mounted water closets do not require the installation of a carrier, which requires more labor and material costs.

Section: Building Systems, Materials, & Assemblies

Question 14

An architect is specifying a finish for exposed metal. The architect wants to select the most sustainable finish.

Which one of the following finishes should the architect specify?

- A. Lacquer
- B. Epoxy paint
- C. Chrome plating
- D. Powder coating

Correct answer: D

CORRECT RESPONSE Powder coating

When metal coatings are required, powder-coated fabrications can be specified as a solvent-free application. The powder overspray can also be reclaimed for reuse.

Section: Building Systems, Materials, & Assemblies

Question 15

An architect wants to encourage the cooling effect of natural ventilation in a large space.

Which one of the following design strategies should be used?

- A. Zone the activities of the space vertically.
- B. Orient the space on an east-west axis.
- C. Add high and low openings to the space.
- D. Design the space around a cold air sink.

Correct answer: C

CORRECT RESPONSE Add high and low openings to the space. The rate that air will move through a space and carry heat depends on the vertical distance between openings, their size, and the difference in temperature between the interior and exterior. A large space can take advantage of the natural effect of warm air rising by allowing it to leave through an opening at the top of the space. A lower opening will allow the cooler air located lower to be pulled in.

Section: Environmental Conditions & Context

Refer to the exhibit.

In which of the following climates should row or cluster housing be used for protection against wind?

- A. Hot and humid
- B. Hot and dry
- C. Temperate
- D. Cold

Correct answer: D

CORRECT RESPONSE Cold

Row or cluster housing is most appropriate for cold climates where protection from cold winter winds is a priority.

Section: Environmental Conditions & Context

Question 17

An architect is designing a building in a cold climate and wants to eliminate condensation on the interior surface of the building's exterior walls.

Which of the following will help eliminate condensation? Check the three that apply.

- A. Increasing the wall insulation
- B. Eliminating the wall insulation
- C. Raising the interior relative humidity
- D. Lowering the interior relative humidity
- E. Raising the surface temperature of the affected area
- F. Lowering the surface temperature of the affected area

Correct answer: ADE

CORRECT RESPONSES

Increasing the wall insulation

Thermal insulation will help to reduce the amount of heat lost from a building and raise the internal temperature of the wall near the interior surface.

Lowering the interior relative humidity

Lower humidity will result in a lower dew point for the air within the space - thus lowering the chance of condensation.

Raising the surface temperature of the affected area

Increasing the surface temperature will reduce cooling of any moisture-laden air and, consequently, the amount of condensation.

Section: Project Integration of Program & Systems

Question 18

Refer to the exhibit.

An owner requests a 100 kW solar array. City ordinance requires solar equipment to be concealed from the public right of way. The architect needs to locate the system on the site plan to maximize performance.

Which letter on the site plan represents the most appropriate location for the solar array?

A. A

В. В

C. C

D. D

Correct answer: C

CORRECT RESPONSE

The panels should be placed on the part of the building with a flat roof to allow for proper sun angles and to conceal the equipment as required by zoning ordinance.

Section: Project Integration of Program & Systems

Refer to the exhibit.

An architect is working on a seven-story L-shaped office building in the northern United States. There will be a three-story glass-enclosed atrium with masonry walls between the two wings of the building. The owner wants the walls within the atrium to have maximum solar gain in the morning only.

Which building orientation should the architect use?

A. A

В. В

C. C D. D

Correct answer: D

CORRECT RESPONSE

With building orientation D, the atrium faces the east, which is the best direction for receiving the maximum morning-only solar gain requested by the owner.

Section: Environmental Conditions & Context

Question 20

An architect is specifying replacement flooring for an open office area in an existing building. The office area features many workstations and pieces of office furniture. The owner's primary concern is to replace the flooring as quickly as possible.

Which one of the following should the architect specify?

- A. Terrazzo
- B. Carpet tile
- C. Ceramic tile
- D. Roll carpet

Correct answer: B

CORRECT RESPONSE

Carpet tile

Workstations can be lifted with jacks and carpet tiles can be installed underneath without having to disassemble or move existing furniture. The owner's primary concern is to replace the flooring quickly, and because disassembling and moving office furniture is time consuming, the flooring material that can be installed the most quickly is the most appropriate choice.

Section: Building Systems, Materials, & Assemblies

Question 21

An architect is evaluating a proposed site for a new elementary school. Upon visiting the site, the architect observes the following:

- Significant erosion patterns on the adjacent property, which is at a much higher-grade elevation.
- Large amounts of sediment and soil deposits dispersed throughout the property.
- Signs of natural vegetation debris collected in piles throughout the site.

Based on these specific discoveries, which resources should the architect refer to before making a recommendation to the owner? **Check the three that apply.**

- A. United States Geological Survey (USGS) maps
- B. Zoning maps applicable to the site
- C. Topographic survey of the proposed site
- D. Geotechnical investigation reports
- E. Federal Emergency Management Agency (FEMA) maps
- F. United States Department of Agriculture (USDA) land surveys

Correct answer: ACE

CORRECT RESPONSES

United States Geological Survey (USGS) maps

The USGS is a valid source of topographic information for the adjacent properties not included on the site survey.

Topographic survey of the proposed site

A topographic survey will inform the site design, particularly regarding potential grade or drainage information.

Federal Emergency Management Agency (FEMA) maps

FEMA maps will provide information on potential site flood risks, drainage concerns, etc. that may be evidenced by deposits on the site.

Section: Environmental Conditions & Context

Refer to the exhibit.

Which one of the building shapes is most likely to resist damage from an earthquake?

A. A

В. В

C. C

D. D

Correct answer: A

CORRECT RESPONSE

A Small, round, square, or rectangular shaped building geometry allows for equal resistance of lateral forces in all directions. Structures having an "L," "T," "H," "U," or "E" shape have unequal resistance that may cause the structure to pull apart in an earthquake.

Section: Building Systems, Materials, & Assemblies

Question 23

Click on the area of the roof plan that requires a cricket to maintain positive drainage.

Area to immediate left of Skylight

Crickets redirect water from obstructions to the primary water flow to maintain positive drainage. The skylight in the center of the roof plan is perpendicular to the roof slope and would require a cricket.

Section: Project Integration of Program & Systems

Question 24

The preliminary bids for a 40,000-square-foot high school addition are over budget. The polished concrete floor originally specified for the floor assembly costs \$6 per square foot. The owner requests a seamless flooring product and the contractor suggests the following alternative flooring materials:

- Vinyl composition tile (VCT): \$1.50 per square foot
- Luxury vinyl tile (LVT): \$4.50 per square foot
- Epoxy flooring: \$1.75 per square foot

What are the cost savings of switching to the preferred alternative flooring material?

- A. \$60,000
- B. \$170,000
- C. \$180,000

Correct answer: B

CORRECT RESPONSE

\$170,000

The owner wants a seamless flooring product and the epoxy flooring is the only option that meets this requirement.

CALCULATIONS

1. Cost of the originally specified polished concrete flooring material: $6.00 \times 40,000 \text{ sf} = 240,000$

- 2. Cost of the preferred alternative flooring material, epoxy flooring: $$1.75 \times 40,000 \text{ sf} = $70,000$
- 3. Cost savings of switching flooring material: \$240,000 \$70,000 = \$170,000

Section: Project Costs & Budgeting

Question 25

	LOCAL AVERAGE TEMPERATURE AND HUMIDITY											
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Avg. Temperature (°F)	54°F	57°F	63°F	69°F	75°F	80°F	89°F	92°F	82°F	74°F	62°F	55°F
Humidity (%)	74%	73%	75%	74%	75%	76%	80%	80%	78%	74%	73%	74%

Refer to the exhibit.

An architect is designing a single-family house on a hill. The architect wants to minimize solar gain and maximize natural ventilation.

Which one of the following locations for the house is most appropriate?

- A. Bottom of a south-facing slope
- B. Midpoint of a south-facing slope
- C. Top of a south-facing slope

Correct answer: C

CORRECT RESPONSE

Top of a south-facing slope

The table shows a hot and humid local climate. Therefore, the windy top is ideal for maximizing natural ventilation. Building on the south side of the hilltop also avoids the hot afternoon sun on the west side.

Section: Environmental Conditions & Context

Question 26

Late in the DD phase for a new theater project, the owner asks to change the Auditorium's proposed flat roof assembly to a 5:12 pitch standing seam metal roof. The change requires relocating the packaged rooftop HVAC equipment. The architect must consider the following client priorities when evaluating locations:

- Minimize mechanical noise transmission in the Auditorium.
- Reserve maximum buildable area above the Stage for fly loft and set equipment.
- Conceal rooftop equipment from view at Lobby entrances.

Assuming a 24-inch-high parapet at all flat roofs, click on the area of the plan to indicate the most appropriate location for the rooftop HVAC equipment.

Above the Storage, Fab Shop, and Alcove area

This area allows for a flat roof with parapet for ease of installation of the packaged rooftop HVAC units, which can serve the Auditorium through the wall of the higher fly loft space above the Stage. This area is also concealed from the lobby entrances, and it would minimize noise transmission into the Auditorium.

Section: Project Integration of Program & Systems

Question 27

An architect is designing a replacement roofing system for an existing building in a hospital complex. The hospital is worried about the effects of the installation of the roof on patients with breathing difficulties. The hospital has asked the architect to choose a roofing system that minimizes health risks.

Which roofing system should the architect specify?

- A. EPDM
- B. Modified bitumen
- C. Four-ply built-up roof

Correct answer: A

CORRECT RESPONSE

EPDM

EPDM membranes have a minimal amount of seams which are joined together with adhesive. This roofing system is the most appropriate option because it is the only system that will not pose a risk to the health of hospital patients during its installation.

Section: Building Systems, Materials, & Assemblies

Question 28

An architect includes a computer server room in the design of a courthouse at the owner's request. The architect wants to make sure that the internal heat load in this room is addressed during design. The architect asks the owner to send a cut sheet for the servers that will be purchased.

With which consultant should the architect coordinate the server room equipment?

- A. Building enclosure consultant
- B. Mechanical engineer
- C. Roofing consultant

Correct answer: B

CORRECT RESPONSE Mechanical engineer

The mechanical engineer needs to use the HVAC system to address internal heat loads such as computer servers.

Section: Project Integration of Program & Systems

Question 29

An architect reviews a preliminary wall detail and determines that the specified weeps are not illustrated.

Click on the area of the wall section detail where the weeps should be located.

Above the 6 MIL Polyethylene Flashing

In this wall section, weeps should be located in the brick veneer above the polyethylene flashing to allow moisture to drain from the brick cavity wall.

Section: Building Systems, Materials, & Assemblies

Question 30

An architect is locating an offsite wind turbine in a rural area with westerly winds. The location of the turbine must take advantage of site topography in order to capture as much wind as possible. Site characteristics and client requirements are as follows:

- The turbine should not be located near the house.
- The foundation of the existing house is at an elevation of 35'.
- The foundation of the turbine must be at a higher elevation than the foundation of the existing house.
- The foundation of the turbine cannot be constructed at elevations higher than 50' due to the presence of rocky outcroppings.

Click on the area in the topographic map to indicate where the wind turbine should be located.

<u>CORRECT RESPONSE</u> Windward side of the north hill between an elevation of 35' and 50'

The most appropriate location for the wind turbine is on the windward side of the north hill. Rocky outcroppings at 50' prevent building above that elevation, and the house at 35' prevents building the turbine below that elevation, leaving a range between 35' and 50' for the location of the wind turbine.

Section: Environmental Conditions & Context

Question 31

TABLE 601 REMENTS FOR BUILDING ELEMENTS (HOURS) PESISTANCE PATING PEO

BUILDING ELEMENT		TYPE I		TYPE II		TYPE III		1		TYPE V		
BUILDING ELEMENT	A	В	Α	В	A	В	A	В	C	HT	Α	В
Primary structural frame ^f (see Section 202)	3 ^{a, b}	2 ^{a, b, c}	1 ^{b, c}	0°	1 ^{b, c}	0	3ª	2ª	2ª	HT	1 ^{b, c}	0
Bearing walls												
Exterior ^{e, f}	3	2	1	0	2	2	3	2	2	2	1	0
Interior	3ª	2ª	1	0	1	0	3	2	2	1/HT ^g	1	0
Nonbearing walls and partitions Exterior						See	Table 70	5.5				
Nonbearing walls and partitions Interior ⁴	0	0	0	0	0	0	0	0	0	See Section 2304.11.2	0	0
Floor construction and associated secondary structural members (see Section 202)	2	2	1	0	1	0	2	2	2	HT	1	0
Roof construction and associated secondary structural members (see Section 202)	1 ¹ / ₂ ^b	1 ^{b,c}	1 ^{b,c}	0 ^c	1 ^{b,c}	0	11/2	1	1	HT	1 ^{b,c}	0

For SI: 1 foot = 304.8 mm.

For SI: 1 foot = 304 8 mm.
a. Roof supports: Fire-resistance ratings of primary structural frame and bearing walls are permitted to be reduced by 1 hour where supporting a roof only.
b. Except in Group F-1, H. M and S-1 occupancies, fire protection of structural members in roof construction shall not be required, including protection of primary structural frame members, roof framing and decking where every part of the roof construction is 20 feet or more above any floor immediately below. Fire-retardant-treated wood members shall be allowed to be used for such unprotected members.
c. In all occupancies, heavy timber complying with Section 2304.11 shall be allowed for roof construction, including primary structural frame members, where a 1-hour or less friencesistance rating is required.
d. Not less than the fire-resistance rating structural by other sections of this code.
e. Not less than the fire-resistance rating as referenced in Section 704.10.
g. Heavy timber bearing walls supporting more than two floors or more than a floor and a roof shall have a fire resistance rating of not less than 1 hour.

Refer to the exhibit.

An architect is determining the fire-resistance rating of structural components for a theater with two levels of seating. The construction type is I-A, and the roof is 35 feet above the highest level of seating.

How many hours should the roof structure be rated?

A. 0 B. 1 1/2 C. 1

Correct answer: A

CORRECT RESPONSE

0

According to footnote "b" for an assembly space, any roof construction where all components are more than 20 feet above any floor immediately below does not need to be rated.

Section: Codes & Regulations

Question 32

An architect is coordinating the drainage of a site with a municipality. The municipality confirms that all of the storm water inlets on the site have adequate capacity for the runoff volume created by the proposed construction.

Click on the inlet in the site plan that is most appropriate to connect the required site drainage.

Correct answer:

CORRECT RESPONSE

Water flows with gravity, and to avoid pumping, the flow line of the storm sewer must be below the level of site drainage. Inlet A is located at the site's lowest elevation.

Section: Project Integration of Program & Systems

Question 33

- GBO 	0.5 /	0% 8
LOT A	LOT B	LOT C
	FRONT	
	3RD STREET.	

Refer to the exhibit.

A developer wants to build a new riverfront apartment building on Lot B and the architect needs to calculate the maximum building footprint. Site details follow:

- The street frontage is 175 feet and the lot depth is 150 feet.
- The AHJ requires a FAR of 2.5 and setbacks of 10 feet at the rear, front, and side.
- The north boundary is a community walkway along Brooke River.
- Brooke River's ordinary high water mark (OHWM) is 75 feet from the plot boundary.
- The AHJ does not permit buildings within 100 feet of a waterway's OHWM.

What is the maximum building footprint allowed on this site?

- A. 6,200 square feet
- B. 17,825 square feet
- C. 20,150 square feet
- D. 65,625 square feet

Correct answer: B

CORRECT RESPONSE 17,825 square feet

CALCULATIONS

1. Maximum footprint width: The side setbacks are 10 feet each, 175 feet (street frontage) - 10 feet (right side setback) - 10 feet (left side setback) = 155 feet

2. Maximum footprint depth: 150 feet (lot depth) - 10 feet (front setback) - 25 feet (rear setback, 100 feet from the OHWM) = 115 feet 3. Maximum footprint: 115 feet x 155 feet = 17,825 square feet

Section: Codes & Regulations

Question 34

An architect is hired to design accessible walking paths for a park that is on the National Register of Historic Places. In several areas, the architect finds that altering the existing walking paths would destroy an historically significant part of the site. The architect notes that only one accessible path can be provided.

How should the architect proceed?

- A. Provide at least one accessible path through the park.
- B. Provide a single accessible path to a viewpoint that can oversee the park.
- C. Contact the National Register of Historic Places to gain approval for modifying all walking paths.

Correct answer: A

CORRECT RESPONSE

Provide at least one accessible path through the park.

If one accessible route through the park is possible, then that path must be designed.

Section: Codes & Regulations

Question 35

An architect is renovating an existing building with 10,080 sf of glazing. The architect must assess the energy cost savings of re-glazing the existing wood windows instead of installing new aluminum windows. Assume the following energy cost information:

- Anticipated energy costs are \$60,000 per year.
- There will be 20% in savings on energy costs if the windows are re-glazed.
- There will be 18% in savings on energy costs if new aluminum widows are installed.

Over a 30-year period, what is the anticipated energy cost savings of re-glazing instead of installing new aluminum windows?

A. \$1,200

- B. \$10,800
- C. \$12,000
- D. \$36,000

Correct answer: D

CORRECT RESPONSE \$36,000

CALCULATIONS

1. For the savings per year of using re-glazed units: \$60,000 (anticipated energy costs) x 20% (cost savings) = \$12,000

- 2. For the savings per year of using new aluminum windows: \$60,000 (anticipated energy costs) x 18% (cost savings) = \$10,800
- 3. Difference in yearly cost savings: \$12,000 \$10,800 = \$1,200
- 4. Amount saved over 30 years: \$1,200 x 30 = \$36,000

Section: Project Costs & Budgeting

Refer to the exhibit.

A developer is determining the best building configuration for Lot 4B, a suburban plot in a cold climate. The lot is 150' x 100' and the maximum building footprint is 15,000 square feet. The owner's program requires a minimum of

48,500 square feet of office space.

To minimize heat loss in winter, which one of the following building configurations should the architect recommend?

- A. A three-story 150' x 110' rectangular footprint
- B. A four-story 120' x 120' square footprint
- C. A four-story 120' x 100' rectangular footprint
- D. A six-story 90' x 90' square footprint

Correct answer: D

CORRECT RESPONSE

A six-story 90' x 90' square footprint

A compact square design is most appropriate for a cold climate. This floor and area calculation fits within the allowable building footprint and meets the owner's program requirements for minimum square footage.

CALCULATIONS

1. 90' x 90' x 6 floors = 48,600 sf 2. 90' x 90' fits within the 150' x 100' building footprint.

Section: Project Integration of Program & Systems

Question 37

An architect is designing an cooperative Art Studio and needs to select a space for the Mechanical Room based on the following requirements:

- Should vent to the north.
- Should not face Main Street.
- Should have an exterior exposure.
- Should not be adjacent to the Art Studio.

Click on the space in the plan where the Mechanical Room should be located.

Correct answer:

CORRECT RESPONSE

Space in northwest corner

The Mechanical Room should be located in this space because it vents to the north, is located far from Main Street, is not adjacent to the Art Studio, and has an exterior exposure.

Section: Project Integration of Program & Systems

Question 38

An office building located in the upper Midwest is experiencing excessive heat in both Meeting Rooms, the Huddle Room, and both Offices during the day. The architect decides that solar heat gain needs to be reduced in these areas with shading systems.

Click on the shaded room in the floor plan where a horizontal overhang would be most effective in reducing solar heat gain.

Correct answer:

CORRECT RESPONSE Huddle Room

Horizontal overhangs are most effective on southern exposures.

Section: Project Integration of Program & Systems

Question 39

ROOM OR AREA	SEPARATION AND/OR PROTECTION
Furnace room where any piece of equipment is over 400,000 Btu per hour input	1 hour or provide automatic sprinkler system
Rooms with boilers where the largest piece of equipment is over 15 psi and 10 horsepower	1 hour or provide automatic sprinkler system
Refrigerant machinery room	1 hour or provide automatic sprinkler system
Hydrogen fuel gas rooms, not classified as Group H	1 hour in Group B, F, M, S and U occupancies; 2 hours in Group A E, I and R occupancies.
Incinerator rooms	2 hours and provide automatic sprinkler system
Paint shops, not classified as Group H, located in occupancies other than Group F	2 hours; or 1 hour and provide automatic sprinkler system
In Group E occupancies, laboratories and vocational shops not classified as Group H	1 hour or provide automatic sprinkler system
In Group I-2 occupancies, laboratories not classified as Group H	1 hour and provide automatic sprinkler system
In ambulatory care facilities, laboratories not classified as Group H	1 hour or provide automatic sprinkler system
Laundry rooms over 100 square feet	1 hour or provide automatic sprinkler system
In Group I-2, laundry rooms over 100 square feet	1 hour
Group I-3 cells and Group I-2 patient rooms equipped with padded surfaces	1 hour
In Group I-2, physical plant maintenance shops	1 hour
In ambulatory care facilities or Group I-2 occupancies, waste and linen collection rooms with containers that have an aggregate volume of 10 cubic feet or greater	1 hour
In other than ambulatory care facilities and Group I-2 occupancies, waste and linen collection rooms over 100 square feet	1 hour or provide automatic sprinkler system
In ambulatory care facilities or Group I-2 occupancies, storage rooms greater than 100 square feet	1 hour
Electrical installations and transformers	See Sections 110.26 through 110.34 and Sections 450.8 through 450.48 of NFPA 70 for protection and separation requirements.

For SI: 1 square foot = 0.0929 m², 1 pound per square inch (psi) = 6.9 kPa, 1 British thermal unit (Btu) per hour = 0.293 watts, 1 horsepower = 746 watts, 1 gallon = 3.785 L, 1 cubic foot = 0.0283 m³.

Refer to the exhibit.

A new, non-sprinklered school building will be constructed as an E occupancy, non-separated, mixed-use building with accessory assembly.

Which of the following incidental use spaces will require a one-hour separation? Check the two that apply.

- A. Kitchen
- B. Gymnasium
- C. Main Offices
- D. Chiller Room
- E. 30 HP Boiler Room
- F. 100,000 BTU Furnace Room

Chiller Room

The chiller room is a refrigerant machinery room, and Table 509.1 stipulates that refrigerant machinery rooms must have a 1-hour separation.

30 HP Boiler Room

In accordance with Table 509.1, rooms with boilers over 10 HP are required to have a 1-hour separation.

Section: Codes & Regulations

Question 40

An architect is designing a building that contains ten sleeping units with attached restrooms. During the design development phase, the client asks the architect to change five of the sleeping units into dwelling units.

What should the architect add to convert the sleeping units into dwelling units?

- A. Office space
- B. Kitchen
- C. Living room

Correct answer: B

CORRECT RESPONSE

Kitchen

Sleeping units can have either sanitation or kitchen facilities but not both. A dwelling unit needs to have both sanitation and kitchen facilities. The addition of a kitchen would convert a sleeping unit into a dwelling unit.

Section: Project Costs & Budgeting

Question 41

The program for a new university recreation building requires large open gymnasiums and open plan exercise rooms for flexible space configurations with 40-foot bays. Additionally, the university wants a solution where the mechanical ductwork integrates with, rather than drops below, the structural members.

Which structural systems are appropriate for this building? Check the two that apply.

- A. Steel open web joists
- B. Engineered glulam truss
- C. Solid wood joists and girders
- D. Two-way concrete flat slabs
- E. Two-way concrete waffle slab
- F. One-way concrete slab and beam

Correct answer: AB

CORRECT RESPONSES

Steel open web joists

Steel open web joists span up to 65' and ductwork can run between or alongside the open web construction. This satisfies all requirements.

Engineered glulam truss

Engineered glulam trusses span upwards of 100', which satisfies the 40-foot bay requirement and provides areas in the truss to run mechanical ductwork.

Section: Building Systems, Materials, & Assemblies

Question 42

Refer to the exhibit.

A new school is moving into an existing building. The school wants the spaces in the building to be used as efficiently as possible. The building code requires 20 nsf per student for classroom spaces.

A classroom for 20 students should be assigned to which of the following spaces?

A. A B. B

с. с

D. D

Correct answer: D

CORRECT RESPONSE

A classroom for 20 students would require a minimum of 400 nsf.

CALCULATION

 $\frac{1}{20}$ nsf (loading factor) x 20 students (number of students in classroom) = 400 nsf space will be most efficient.

Section: Project Integration of Program & Systems

Question 43

An architect is designing a new computer lab as part of an addition to an existing high school. The owner has the following requirements:

- The lab must accommodate 30 computer workstations.
- Flexibility to switch between group and individual learning furniture configurations.
- The design should minimize sound levels within the space.

Which design should the architect consider?

- A. Raised accessible subfloor with carpet flooring
- B. Underfloor duct raceways with resilient flooring
- C. Evenly spaced floor boxes with acoustic wall panels

Correct answer: A

CORRECT RESPONSE

Raised accessible subfloor with carpet flooring

A raised floor will best accommodate the flexibility needed for different furniture configurations, and carpet has a good noise reduction coefficient that will help reduce overall noise reverberation in the room.

Section: Project Integration of Program & Systems

Question 44

An architect is in the programming phase of a tenant improvement project for a small university office suite in an existing building. The client has asked for five 120-square-foot offices for staff members, a 200-square-foot conference room, and a 100-square-foot storage room. The client has a limited budget and would like to minimize the area to be remodeled.

Other programming requirements follow:

- Use a building efficiency ratio (net-to-gross) of 0.75 if a double-loaded corridor design is implemented.
- Use a building efficiency ratio (net-to-gross) of 0.70 if a single-loaded corridor design is implemented.
- At least two offices and conference rooms should be located along exterior walls for views.
- The dimension of the longest length of existing space to remodel is 50 feet.

How much area is needed for the renovation?

- A. 1,285 square feet
- B. 1,200 square feet
- C. 1,250 square feet
- D. 1,575 square feet

Correct answer: B

CORRECT RESPONSE

1,200 square feet

A double-loaded corridor design should be implemented to minimize the area that needs to be remodeled.

CALCULATIONS

- 1. Total office area: 120 sf x 5 offices = 600 sf
- 2. Total net square footage: 600 sf (offices) + 200 sf (conference room) + 100 sf (storage room) = 900 nsf
- 3. Gross square footage needed: 900 net sf \div 0.75 efficiency ratio = 1,200 sf

Section: Project Integration of Program & Systems

Question 45

An architect is designing a project that requires the installation of four 12.5-ton roof top units (RTUs). After reviewing the plan sent from the mechanical engineer, the architect notices that the ductwork from the RTUs penetrate a rated roof assembly.

Which one of the following needs to be incorporated into the mechanical design at the roof assembly?

- A. Smoke filters
- B. Isolation curbs
- C. Fire dampers

Correct answer: C

CORRECT RESPONSE

Fire damper

Fire dampers are used for smoke and fire control and would need to be installed at the roof assembly level in all ductwork penetrating the rated roof assembly.

Section: Project Integration of Program & Systems

Question 46

A municipality hires an architect to design a public park in an environmentally sensitive area. The architect is designing a pedestrian pathway and wants to specify a material that maximizes infiltration.

Which material should the architect specify?

- A. Grass
- B. Asphalt
- C. Crushed stone
- D. Concrete pavers

Crushed stone

Crushed stone supports pathway traffic and also allows rainwater to filter through the material, percolating into the subsoil or running off into the lawn area or plant bedding areas.

Section: Environmental Conditions & Context

Question 47

A two-story office building is being constructed in the southeastern United States. The architect is seeking a design strategy to maximize daylighting while minimizing heat gain.

Which strategy should the architect choose?

- A. Provide windows mounted low on the wall.
- B. Provide a larger window glass area.
- C. Provide light shelves at windows.

Correct answer: C

CORRECT RESPONSE

Provide light shelves at windows.

Light shelves project daylighting further into the interior spaces while at the same time shading the window area below, reducing heat gain.

Section: Project Integration of Program & Systems

Refer to the exhibit.

An architect is designing a new community center located in an historic district that consists of two-story brick veneer buildings. For new construction, the local planning department has mandated that a majority of street-facing facades maintain a similar aesthetic as the adjacent historic facades. On the interior of the city block, other facade treatments are encouraged. Program requirements for community center buildings follow:

- Exploratorium Lab (EL): Will be built using metal studs with brick veneer and limited windows.
- Outreach Center (OC): Must be located near the Community Garden with direct access to 2nd Avenue for deliveries and feature glass facades.
- Welcome Center (WC): Must be located near the Bus Terminal and Community Garden and feature glass facades.

Which letter within the project boundary above represents the appropriate location for the Outreach Center (OC)?

A. A

В. В

C. C

The Outreach Center (OC) requires access from 2nd Avenue and must be near the Community Garden.

Section: Environmental Conditions & Context

Refer to the exhibit.

An architect is designing a 30' x 50' building that must incorporate daylighting and provide views to the pond.

Which building configuration should the architect choose?

- A. Building Configuration A
- B. Building Configuration B
- C. Building Configuration C
- D. Building Configuration D

Correct answer: B

CORRECT RESPONSE Building Configuration B

This configuration is most appropriate, as it has an east-west, lengthwise orientation and provides views to the pond.

Section: Project Integration of Program & Systems

Question 50

Click on the area of the site plan where the required ADA accessible parking spaces should be located.

The three parking spots closest to the main entrance.

This is the correct location for the accessible parking spaces because accessible parking should be placed in those parking spaces closest to the main entrance of a building.

Section: Codes & Regulations

Question 51

1 PLAN THIRD FLOOR PLAN

Refer to the exhibit.

An architect is designing a four-story hotel with a double-loaded corridor system where exit stairs are located at each end of the corridor. Exit stair shafts are considered safe areas inside the building. The owner wants exit doors on each floor to be held in an open position and equipped with automatic door closing devices.

Which hold open doors must return to the close position when the fire alarm is triggered?

- A. Exit doors located on the floor where a fire originates.
- B. Exit doors leading to the exit stair shaft on all of the floors.
- C. Exit doors to stair shafts located at all floors above the floor where a fire originates.

Correct answer: B

CORRECT RESPONSE

Exit doors leading to the exit stair shaft on all of the floors.

Stair shafts are considered safe zones inside the building and must be free from smoke and fire during an emergency.

Section: Codes & Regulations

Question 52

An architect is designing a perimeter stormwater management system for a residential building.

Click on the area of the building section where perforated drain pipe must be installed to divert water away from the building.

Correct answer:

CORRECT RESPONSE

The perforated drain pipe is installed along the perimeter of the foundation and collects excess water and diverts it away from the building.

Section: Building Systems, Materials, & Assemblies

Question 53

During the DD phase for a 10-story office building, the owner requests a 50% increase in air exchange per hour (ACH) capacity to reduce the risk of spreading infectious respiratory diseases. The SD drawings show chillers and air-handling units on the rooftop.

Which of the following changes will occur due to the ACH increase? Check the two that apply.

- A. A decrease in occupant load for the entire building.
- B. An increase in the dead load on the roof.
- C. A decrease in shaft spaces on all levels.
- D. An increase in shaft spaces on all levels.
- E. A decrease in the water service pressure for the entire building.
- F. An increase in the water service pressure for the entire building.

Correct answer: BD

CORRECT RESPONSES

An increase in the dead load on the roof. Roof dead load will increase because of the additional HVAC equipment on rooftop.

An increase in shaft spaces on all levels.

Shaft spaces will increase in order to accommodate the ducting needed for additional air exchange.

Section: Project Integration of Program & Systems

Question 54

An architect is designing a new 1,200-square-foot house with eight-foot ceilings. The initial design calls for five 3' x 4' windows that allow 60 cfm of fresh air each. However, the local sustainable design ordinance requires new houses to provide three fresh air changes per hour.

How many additional 3' x 4' windows are required to comply with the ordinance?

- A. 3 windows
- B. 5 windows
- C. 8 windows
- D. 11 windows
- D. 11 WINDOWS

Correct answer: A

CORRECT RESPONSE

3 windows

CALCULATIONS

- 1. House volume: 1,200 square feet x 8 foot ceiling height = 9,600 cubic feet
- 2. Cubic feet per hour required by ordinance: 9,600 cubic feet x 3 fresh air changes per hour = 28,800 cubic feet per hour
- 3. Cubic feet per minute required: 28,800 cubic feet per hour / 60 minutes per hour = 480 cubic feet per minute
- 4. Cubic feet per minute provided by five windows: 5 windows x 60 cubic feet per minute = 300 cubic feet per minute
- 5. Cubic feet per minute deficit: 480 cubic feet per minute required 300 cubic feet per minute already available = 180 cubic feet per minute still needed

6. Additional windows required: 180 cubic feet per minute / 60 cubic feet per minute (each window) = 3 windows

Section: Project Integration of Program & Systems

Question 55

An architect is developing an existing site for an auto dealership. To save costs, the owner wants the sales and service building located in an area that maintains existing site drainage and landscaping. The owner also wants to locate vehicle inventory parking in an area with maximum visibility from traffic.

Click on the area of the site plan to indicate the most appropriate location for the sales and service building.

Correct answer:

CORRECT RESPONSE Option B Option B will not conflict with drainage and provides for a long axis to park vehicle inventory that will maximize the promotion of that inventory to passing traffic.

Section: Environmental Conditions & Context

Question 56

An architect is coordinating the design of the lighting and electrical receptacle locations for an amphitheater project. The consulting electrical engineer recommends a line voltage system over a low voltage system.

Why should the architect take the engineer's recommendation to use a line voltage system?

- A. Lower installation costs
- B. Fewer junction boxes required
- C. Easy integration of system over large areas

Correct answer: C

CORRECT RESPONSE

Easy integration of system over large areas

Line voltage systems have a lower voltage drop and can carry power for greater distances than low voltage systems.

Section: Building Systems, Materials, & Assemblies

Question 57

Refer to the exhibit.

While reviewing a drawing set for an apartment complex's clubhouse, an architect notices that some doors do not swing in a code-compliant direction.

Which of the following doors in the floor plan need to be revised to comply with code? Check the three that apply.

- A. A
- В. В
- C. C
- D. D
- Ε. Ε
- F. F

Correct answer: BCE

CORRECT RESPONSES

В, С, Е

These doors need to swing out due to the occupancy load of the building. The remaining doors are allowed to swing in the direction shown since they do not exceed the allowable occupancy load of 50 occupants. The IBC stipulates that rooms with more than 50 occupants are required to have doors that swing in the direction of exit travel.

Section: Codes & Regulations

Refer to the exhibit.

An architect is designing the south-facing wall section of an office building. The architect needs to provide glare control and maximize indirect daylight in the space.

Which wall section above meets the requirements?

A. A

- В. В
- C. C

Correct answer: A

CORRECT RESPONSE

A A light shelf should be placed to the right of the mullions in the interior to reflect sunlight along the ceiling, providing indirect illumination deeper into the space. Louvers running perpendicular to direct sunlight should be placed to the left of the same mullions on the outside in order to provide glare control and shading during summer months.

Section: Project Integration of Program & Systems

Question 59

 \hat{A} client asks an architect to perform a feasibility study for a rectangular 50' x 100' urban lot. The 50' side fronts the street. The zoning ordinance stipulates the following:

- Front and side setbacks: 5'
- Rear setback: 25'
- Maximum impervious coverage: 2,400 sf
- FAR: 2.0 (based on total land area, including setbacks)
- Maximum building stories on site: 4

What is the maximum gross building area?

- A. 5,600 square feet
- B. 9,600 square feet
- C. 10,000 square feet
- D. 11,200 square feet

Correct answer: B

CORRECT RESPONSE 9,600 square feet
CALCULATIONS

1. Front and rear setbacks: 100 feet - 5 feet - 25 feet = 70 feet

2. Side setbacks: 50 feet - 5 feet - 5 feet = 40 feet

3. Buildable site area within setbacks: 40 feet x 70 feet = 2,800 square feet

4. Maximum impervious coverage is 2,400 square feet so this becomes the footprint's limiting factor.

5. Calculate maximum FAR: 50 feet x 100 feet = 5,000 square feet (total land area) x 2 (FAR) = 10,000 square feet

6. Maximum gross floor area: 2,400 square feet (max. impervious coverage) x 4 stories = 9,600 square feet (which is under the maximum FAR)

Section: Codes & Regulations

Question 60

An owner asks an architect to locate a new cabin on a wooded lot. The existing pine trees should be preserved as they will provide a wind break for the northwesterly winter winds. The owner wants the new cabin to have expansive views of the river and the rock outcropping, to receive morning light, and to be shielded from late afternoon sun. The cabin should also be located away from the road.

Click on the location in the site plan to indicate where the new cabin should be built.

Correct answer:

CORRECT RESPONSE

Southeast corner of the property

The new cabin should be built at this location because it has existing trees that will provide a wind break from the northwest; it allows for morning sun; has views of the river and rock outcropping; and is located away from the road.

Section: Project Integration of Program & Systems

Question 61

TABLE 1004.5 MAXIMUM FLOOR AREA ALLOWANCES PER OCCUPANT

FUNCTION OF SPACE	OCCUPANT LOAD FACTOR ³
Accessory storage areas, mechanical equipment room	300 gross
Agricultural building	300 gross
Aircraft hangars	500 gross
Airport terminal	
Baggage claim	20 gross
Baggage handling	300 gross
Concourse	100 gross
Waiting areas	15 gross
Assembly	
Gaming floors (keno, slots, etc.)	11 gross
Exhibit gallery and museum	30 net
Assembly with fixed seats	See Section 1004.6
Assembly without fixed seats	
Concentrated (chairs only-not fixed)	7 net
Standing space	5 net
Unconcentrated (tables and chairs)	15 net
Bowling centers, allow 5 persons for each lane including 15 feet of runway, and for additional areas	7 net

1005.3.2 Other egress components.

The capacity, in inches, of means of egress components other than stainways shall be calculated by multiplying the occupant load served by such component by a means of egress capacity factor of 0.2 inch (5.1 mm) per occupant.

Refer to the exhibit.

An architect is determining the size and number of doors for a large, rectangular assembly room that will be used as an exhibition gallery. The assembly room will be 150'-deep by 250'-long. The AHJ requires that all means of egress components other than stairways use an egress capacity factor of 0.2 inches per occupant. All assembly room exits will use double doors.

How many 60-inch clear width double door exits are required?

- A. 4 double door exits
- B. 5 double door exits
- C. 8 double door exits
- D. 9 double door exits

Correct answer: B

CORRECT RESPONSE

5 double door exits

CALCULATIONS

1. Determine room size: 150 feet x 250 feet = 37,500 square feet

2. 37,500 square feet / 30 square feet per occupant (occupant load factor for an assembly space for exhibit galleries) = 1,250 occupants 3. Egress components other than stairwells require multiplying the occupant load served by a means of egress capacity factor of 0.2 inches

per occupant.

4. 1,250 occupants x 0.2 inches = 250 inches of egress width required

5. 250 inches of egress width / 60 inches (double doors) = 4.17 doors, rounded up to 5

Section: Codes & Regulations

Question 62

Program Summary			
Quantity Area			Requirements
Vestibule	1	400	Connects the existing building to the common area
Common Area	1	1000	Multipurpose gathering/circulation space
Classroom	4	450	Need indirect natural light and playground access via corridor
Science Lab	1	1000	Accessed from the Common Area
Teachers Lounge	1	500	Visual control over the playground
Workroom	1	550	Adjacent to the Teachers Lounge
Restroom	2	200	Accessed from the Common Area

Refer to the exhibit.

A school is adding a small classroom building to its existing campus. The new building will be connected to the existing building by a covered walkway.

Which bubble in the plan diagram is the appropriate location for the Teachers Lounge?

A. A

В. В

C. C D. D

Correct answer: A

CORRECT RESPONSE

In order to have the best visual control over the playground, the Teachers Lounge must be placed centrally along the west wall.

Section: Project Integration of Program & Systems

Question 63

A condominium project is planned with electric carts and sport court amenities. The program includes an electric cart storage garage for 36, four-foot-wide, two-passenger carts. The nine-foot-wide reinforced concrete path from the garage to the sport courts is a target for value engineering.

Which of the following are appropriate cost-saving strategies? Check the three that apply.

A. Specify a compacted gravel path

- B. Utilize pervious concrete
- C. Reduce the path width to six feet and add limited widened areas for passing
- D. Modify the existing grade to reduce undulations
- E. Reduce the number of carts to be stored within the garage
- F. Redesign the path route with a more direct link to the sport courts

Correct answer: ACF

CORRECT RESPONSES

Specify a compacted gravel path

Compacted aggregate costs less than reinforced concrete and will support electric carts.

Reduce the path width to six feet and add limited widened areas for passing

At four feet wide, the carts are appropriate for a six-foot-wide path. By adding defined areas for passing, it avoids the need for carts to go off the path.

Redesign the path route with a more direct link to the sport courts

A more direct link will reduce overall length of pavement needed.

Section: Project Costs & Budgeting

Question 64

An architect is designing a single-family residence. To minimize plumbing line lengths, the architect chooses to align the following bathroom fixtures on the same wall:

- A 30"-wide lavatory with vanity
- A 30" x 60" tub and shower
- A toilet

Which size is the most efficient layout for this bathroom?

A. 5' x 8' B. 5' x 10' C. 6' x 6' D. 6' x 9'

Correct answer: A

CORRECT RESPONSE 5' X 8'

A 5' x 8' bathroom is the most efficient of the options. In inches, the bathroom would be 60" x 96". The toilet (with 36" of space), the 30inch lavatory and vanity, and the 30-inch side of the tub and shower would all be placed against one wall, as required. The tub and shower would extend down the 60-inch wall.

Section: Project Integration of Program & Systems

Question 65

An architect is designing a five-story addition to an existing building, and a separate foundation needs to be designed to support the addition. A subsurface investigation reveals that the soil on the site is predominantly coarse grained.

Which type of foundation is most appropriate for the new building?

- A. Shallow foundation with stepped footings
- B. Shallow foundation with cantilever footings
- C. Deep foundation with micropiles
- D. Deep foundation with friction piles

Correct answer: B

CORRECT RESPONSE

Shallow foundation with cantilever footings

Coarse grained soil on the site indicates that a deep foundation is not required. A cantilever footing addresses the need to build against an existing building.

Section: Building Systems, Materials, & Assemblies

Question 66

An architect is designing a theater with a control room that will house lighting and acoustical control equipment.

Which type of portable fire extinguisher should the architect specify for this room?

- A. Class A
- B. Class B
- C. Class C
- D. Class D

Correct answer: C

CORRECT RESPONSE

Class C Class C extinguishers are used on fires involving electrical equipment.

Section: Building Systems, Materials, & Assemblies

Question 67

An architect is designing a mixed-use building on a sloped site. The building will have a cast-in-place concrete parking garage on the ground floor and residential units above. During the schematic design phase, the client decides to add a level of parking below grade to the garage.

What should the architect evaluate before proceeding with the change? Check the four that apply.

- A. Ventilation requirements
- B. Cost of excavation
- C. Facade budget
- D. Prevailing wind direction
- E. Number of exits provided
- F. Subsoil conditions

Correct answer: ABEF

CORRECT RESPONSES Ventilation requirements

An open parking garage has a minimum required opening-to-wall area ratio on each tier of the garage. Extending the garage below grade will impact the ability to provide adequate openings.

Cost of excavation

Adding a below grade level to the parking garage will add excavation costs to the project. The architect should notify the client that the project budget needs to be updated because of the design change.

Number of exits provided

Adding a story to the building requires the architect to confirm life safety requirements for the newly created spaces. The number of exits provided will be part of the life safety check.

Subsoil conditions

Soil conditions for the underground parking garage will impact the design of the building.

Section: Project Integration of Program & Systems

Question 68

An architect is selecting an elevator for a three-story residential building that serves 12 apartments. Initial cost is the developer's primary consideration.

Which one of the following systems should the architect select?

- A. Geared traction elevator
- B. Gearless traction elevator
- C. Holeless hydraulic elevator
- D. Conventional hydraulic elevator

Correct answer: C

CORRECT RESPONSE

Holeless hydraulic elevator

Holeless hydraulic elevators can serve lift heights up to 40 feet so it will work for a three-story building. While a holeless hydraulic elevator will have higher operating costs, it will have the lowest initial cost, which is what the developer desires.

Section: Building Systems, Materials, & Assemblies

Question 69

An architecture firm is evaluating design options for a new office building that will maximize the use of natural daylighting. All floor-to-floor heights and overall square footages are the same for each option.

Click on the building form option in the array that the architect should use for the design of the new office building.

Correct answer:

CORRECT RESPONSE

Option B

Option B has the highest ratio of surface facade area to building area.

Section: Project Integration of Program & Systems

Question 70

An architect is specifying a geo-exchange heat pump system for an office building. The building is on a site that has a significant concentration of groundwater and is conducive to well drilling. The owner wants the heat pump system that is the most cost-effective and energy-efficient.

Which heat pump system should the architect specify?

- A. Vertical open loop
- B. Vertical closed loop
- C. Horizontal open loop
- D. Horizontal closed loop

Correct answer: B

CORRECT RESPONSE

Vertical closed loop

For ground that is conducive to well drilling, the deep ground will be warmer in the winter and cooler in the summer than ground closer to the surface. Vertical systems are most efficient in ground that is conducive to well drilling. Closed loop systems use much less pumping energy than open loop systems.

Section: Building Systems, Materials, & Assemblies

Question 71

An architect is specifying a fire suppression system for a small museum building that will house sensitive and expensive artifacts.

Which one of the following should the architect specify?

- A. Dry-pipe system
- B. Preaction system
- C. Deluge system
- D. Mist system

Correct answer: B

CORRECT RESPONSE Preaction system

A preaction system must go through a two-step process before the sprinklers will release water. This system is designed to protect spaces with sensitive and expensive materials.

Section: Building Systems, Materials, & Assemblies

Question 72

A modular wall system vendor hires an architect to design a showroom in a new high-rise building with 15' slab-toslab levels. The vendor wants to highlight the workspace flexibility offered by their demountable wall systems. The vendor also wants a flexible electrical system without exposed cabling.

Which one of the following options is most appropriate for the showroom?

- A. Wire cable hanging system
- B. Raised access flooring system
- C. Floor-mounted raceway system

Correct answer: B

CORRECT RESPONSE

Raised access flooring system

A raised access flooring system will give the vendor flexibility without exposed cabling. The ample slab-to-slab height allows a raised system to integrate other systems.

Section: Project Integration of Program & Systems

Question 73

An architect is coordinating the acoustical system for an auditorium, which is equipped with a series of loudspeakers. Some of the loudspeakers will require a time delay in order to prevent loudspeaker sound from reaching the audience before the sound of the presenter. The architect is determining which loudspeakers can function without a time delay.

Click on the loudspeaker in the section that does not require a time delay.

Correct answer:

CORRECT RESPONSE

Loudspeaker Cluster X

With loudspeakers located above the presenter in a central cluster system, the direct sound from the presenter will reach the listener slightly before the amplified sound. Therefore, the two sounds are fully integrated, as per the Haas effect (the sound that arrives first establishes the source of the sound (the presenter) and the second sound close behind adds to the loudness and the listener believes that the sound is from the presenter). The first loudspeaker cluster above the presenter, then, will not require a time delay. Loudspeakers Y and Z, on the other hand, will require a time delay because their locations are so far away from the presenter that the sound from those loudspeakers will reach the listeners before the sound from the presenter.

Section: Building Systems, Materials, & Assemblies

Question 74

An architect is designing a building renovation and needs to add an accessible ramp at an existing entrance that currently only has stairs. The dimension between grade and the building entrance is 42". A survey shows no changes in grade on the site around the building. Accessibility code requires wheelchair accessible ramps to be between a 1:12 and 1:20 slope, with a maximum rise of 30" between 60"-long landings.

Based on the accessibility code requirements provided above, what is the minimum length of the accessible ramp between the top and bottom landings?

- A. 30'-0"
- B. 42'-0"
- C. 47'-0"
- D. 75'-0"

Correct answer: C

CORRECT RESPONSE 47'-0"

CALCULATIONS

- 1. The ramp has a maximum rise of 30 inches at a 1:12 slope, so one intermediate landing of 60 inches (minimum) is required = 5 feet 2. Minimum ramp length: 42 inches of vertical rise requires 42 feet of ramp
- 3. 42 feet of ramp + 5 feet for the intermediate landing = 47 feet

Section: Codes & Regulations

Question 75

An architect is designing a children's playground in a residential development. The playground site is an open grass area that is prone to ponding rain water. The developer has asked the architect to reduce the ponding without regrading.

Which one of the following should the architect include in the playground design?

- A. Area drains
- B. Slotted concrete pavers
- C. Subsurface perforated piping

D. Brick pavers with open joints

Correct answer: C

CORRECT RESPONSE

Subsurface perforated piping Subsurface perforated piping is used to control and remove soil moisture.

Section: Building Systems, Materials, & Assemblies

Question 76

A low-rise building is designed to allow for a future addition that will result in a midrise building with a higher water demand. When the addition is complete, the majority of the building's rooftop will be dedicated to the mechanical system and individual floors will not be able to support a water tank.

Which water supply system should be used?

- A. Upfeed distribution
- B. Downfeed distribution
- C. Pumped upfeed distribution

Correct answer: C

CORRECT RESPONSE

Pumped upfeed distribution

Pumped upfeed distribution uses multiple pumps to supply water directly to fixtures without using a water storage tank.

Section: Building Systems, Materials, & Assemblies

Question 77

C · · · · · ·			
	Product Cost Per Sq. Ft.	Product Cost Per Sq. Yd.	Installation Cost Per Sq. Ft.
Carpet		\$54.00	\$2.50
Padding	\$0.50		Included
Porcelain Tile	\$9.00		\$2.00
Cementitious Terrazzo	\$15.00		Included
Epoxy Terrazzo	\$18.00		Included
Inlaid Vinyl Sheet Flooring	\$6.00		\$2.00
LVP	\$4.00		\$2.00
Underlay	\$0.50		\$0.50

Refer to the exhibit.

A hospital considers converting a 5,000-square-foot office space into clinical space. The space is currently carpeted but will require a change to a nonporous surface. The following flooring materials are being evaluated based on their life expectancy:

- Porcelain tile: 10 years
- Epoxy terrazzo: 20 years
- Inlaid vinyl sheet: 5 years

Assuming the same replacement material is used, what is the price of the most cost-effective flooring material over a 25-year period?

A. \$135,000

- B. \$150,000
- C. \$165,000

D. \$180,000

Correct answer: C

CORRECT RESPONSE \$165,000

CALCULATIONS Calculate the lowest cost of each material option over 25 years

- 1. Porcelain tile: 3 installations x \$11/sf (price + installation) = \$33
- 2. Epoxy terrazzo: 2 installations x \$18/sf (price + installation included) = \$36
- 3. Inlaid vinyl sheet: 5 installations x $\frac{8}{s}$ (price + installation) = 40

Comparing the above, three installations of porcelain tile are less expensive than two installations of Epoxy terrazzo or five installations of Inlaid vinyl sheet.

Calculate the cost of the porcelain tile over 25 years.

- 4. \$9.00 (price of porcelain tile per sf) + \$2.00 (installation price per sf) = \$11 per sf
- 5. $11.00 \times 5,000$ (square footage of converted space) = 55,000
- 6. $55,000 \times 3$ (number of installations over 25 years) = 165,000

Section: Project Costs & Budgeting

Question 78

An architect is using environmentally responsive and sustainable practices for the design of a farm-to-table restaurant. The owner has asked the architect to develop a water harvesting system that will collect water from the roof and reuse it for the watering of the restaurant's vegetable garden.

Which roofing material should the architect specify?

- A. Treated cedar shingles
- B. Galvanized standing seam
- C. Asphalt composition shingles

Correct answer: B

CORRECT RESPONSE

Galvanized standing seam Galvanized metal roofing is an environmentally friendly roofing material that will not contaminate the collected water.

Section: Building Systems, Materials, & Assemblies

Question 79

A client is considering changes to the site development schedule for a new parking lot and public plaza by delaying the project start for a year.

Click on the line item in the cost estimate that will need to be adjusted due to this change.

Correct answer:

	Quantity	Unit Cost	Unit Measure	Total
Site Work				
Site Prep. and Rough Grading	940,460	\$0.68	Sq. Ft. Surface	\$641,864.00
Fine Grading	47,301	\$2.32	Sq. Ft. Surface	\$109,762.0
Asphalt Paving	1,230	\$1,147.50	Per Car	\$1,411,425.0
Plaza Pavers	2,000	\$19.59	Sq. Ft. Surface	\$39,186.0
Utility Relocation	940,460	\$2.73	Sq. Ft. Surface	\$2,567,456.0
Planting Allowance	42,570	\$0.92	Sq. Ft. Surface	\$39,335.0
Site Fencing	4,000	\$17.99	Lin. Feet	\$71,946.0
Security Booth	1	\$15,000.00	Each	\$15,000.0
Subtotal Cost				\$4,895,974.0
Contractor OH & Profit		7	Percent	\$342,652.8
Design Contingency		7	Percent	\$366,703.8
Escalation		3	Percent	\$168,159.9
Adjusted Total Construction	Cost			\$5,773,490.6

CORRECT RESPONSE

Escalation

Delaying the project for a year will impact the project budget, and an adjustment will need to be made to the "Escalation" line item, which accounts for inflation.

Section: Project Costs & Budgeting

Question 80

FUNCTION OF SPACE	OCCUPANT LOAD FACTOR*	Educational	
Accessory storage areas, mechanical equipment room	300 gross	Classroom area Shops and other vocational room	20 net 50 net
Agricultural building	300 gross	areas	
Aircraft hangars	500 gross	Exercise rooms	50 gross
Airport terminal Baggage claim	20 gross	Group H-5 fabrication and manufacturing areas	200 gross
Baggage handling	300 gross	Industrial areas	100 gross
Concourse	100 gross	Institutional areas	
Waiting areas	15 gross	Inpatient treatment areas	240 gross
Assembly		Outpatient areas	100 gross
Gaming floors (keno, slots, etc.)	11 gross 30 net	Sleeping areas	120 gross
Exhibit gallery and museum		Kitchens, commercial	200 gross
Assembly with fixed seats	See Section 1004.6	Library	
Assembly without fixed seats Concentrated	7 net	Reading rooms	50 net
(chairs only—not fixed)	/ net	Stack area	100 gross
Standing space	5 net	Locker rooms	50 gross
Unconcentrated (tables and chairs)	15 net	Mall buildings-covered and open	See Section 402.8
Bowling centers, allow 5 persons for		Mercantile	60 gross
each lane including 15 feet of runway,	7 net	Storage, stock, shipping areas	300 gross
and for additional areas		Parking garages	200 gross
Business areas	150 gross	Residential	200 gross
Concentrated business use areas	See Section 1004.8	Skating rinks, swimming pools	
Courtrooms-other than fixed	40 net	Rink and pool	50 gross
seating areas		Decks	15 gross
Day care	35 net	Stages and platforms	15 net
Dormitories	50 gross	Warehouses	500 gross

Refer to the exhibit.

An architect is designing a 4,000-square-foot restaurant building. The kitchen will occupy 30% of the space and the remaining space will be for dining with tables and chairs. The local code requires 0.5 parking spaces per occupant.

How many parking spaces are required?

- A. 96 parking spaces
- B. 97 parking spaces
- C. 192 parking spaces
- D. 193 parking spaces

Correct answer: B

CORRECT RESPONSE 97 parking spaces

CALCULATIONS

- 1. Kitchen: 4,000square feet x 30% = 1,200square feet / 200 (occupant load factor) = 6 people2. Dining: 4,000square feet x 70% = 2,800square feet / 15 (occupant load factor) = 186.66 people, rounded up to 187
- 3. Total parking spaces required: 193 occupants x = 96.5 parking spaces, rounded up to 97

Section: Codes & Regulations

Refer to the exhibit.

An architect is selecting a sprinkler system for a building in a cold climate.

For which of the following should the sprinkler system be used? Check the two that apply.

- A. Rare book areas
- B. Airplane hangars
- C. Typical office spaces
- D. Ventilated attic spaces
- E. Freezer storage rooms
- F. Computer server rooms

Correct answer: DE

CORRECT RESPONSES

Ventilated attic spaces Freezer storage room

The illustration shows a dry pipe system. In both spaces, a dry pipe system is needed to prevent the pipes from freezing.

Section: Building Systems, Materials, & Assemblies

Question 82

An architect is designing a multistory warehouse for heavy storage. The warehouse is to be constructed on a site where zoning regulations limit height.

Which one of the following structural systems is most appropriate?

- A. Cast-in-place, reinforced concrete columns, capital, drop, and flat slab floors.
- B. Cast-in-place, reinforced concrete columns, girders, beams, and joist slab floors.
- C. Structural steel columns, girders, beams, joists, steel form deck, and reinforced concrete floors.

Correct answer: A

CORRECT RESPONSE

Cast-in-place, reinforced concrete columns, capital, drop, and flat slab floors.

Where building height is limited, the flat slab floor has the smallest ceiling-to-floor dimension and will allow for more stories than any of the other systems listed.

Section: Building Systems, Materials, & Assemblies

Question 83			
Minimum Exhaust Rates			
Occupancy Category	Exhaust Rate cfm/sf		
Arena	0.50		
Auto repair bays	1.50		
Barber shops	0.50		
Darkrooms	1.00		
Janitor closets	1.00		
Kitchenettes	0.30		
Parking garages	0.75		
Woodwork shop	0.50		

Refer to the exhibit.

The design team is selecting exhaust fans for the entire High Bay area in the Existing Auto Repair Shop. The client wants to purchase the minimum number of fans needed to exhaust existing High Bay areas A through D. Exhaust fans can be purchased according to the following:

- Model A exhausts 3,200 CFM and costs \$300
- Model B exhausts 5,000 CFM and costs \$400

Utilizing the exhaust rates in the exhibit, how much should be budgeted for exhaust fans for the entire High Bay area?

- A. \$400
- B. \$700
- C. \$800
- D. \$900

Correct answer: B

CORRECT RESPONSE

\$700

The Existing Building Drawings resource indicates that the High Bay area is 5,050 square feet. Auto repair bay spaces need to exhaust 1.5 cfm per square foot, meaning that the fans in the High Bay area will need to meet or exceed an exhaust rate of 7,575 cfm. One Model A fan and one Model B fan will meet this requirement, exhausting 8,200 cfm for a price of \$700, the lowest price available among the options.

CALCULATIONS

1. For the square footage of the High Bay area that needs to be exhausted: 1,350 sf + 1,180 sf + 1,180 sf + 1,340 sf = 5,050 sf2. For the exhaust rate required for the High Bay area: $5,050 \text{ sf} \times 1.5$ (cfm per square foot needed to exhaust auto repair bays) = 7,575 cfm

3. The amount exhausted by fans needs to be greater than 7,575 cfm.

- 4. Total cfm exhausted by Model A and Model B: 3200 cfm + 5000 cfm = 8,200 cfm
- 5. Total cost for Model A and Model B: \$300 + \$400 = \$700

CASE STUDY RESOURCES USED Scenario Existing Building Drawings

Section: Project Costs & Budgeting

Question 84

The architect instructs the consulting electrical engineer to specify recessed, two-lamp fixtures with antimicrobial finish and a 0.125-inch-thick acrylic shield to fit into the existing ceiling grid in the restrooms. The architect also tells the engineer that the fixtures must be compatible with the replacement bulbs that the maintenance department stores in the warehouse. The engineer visits the warehouse and observes that maintenance stocks one-inchdiameter straight, tubular bulbs.

Which one of the following models meets the architect's criteria?

A. 50-G-X-2-4-2-17-F-A19156-F338-EB2-277 B. 50-G-X-2-2-4-17-F-A19156-F338-EB2-277 C. 50-G-X-2-2-2-17-F-A12125-AMW-EB2-120 D. 50-G-X-2-2-14T5S-F-A12125-AMW-EB2-120

Correct answer: C

CORRECT RESPONSE

50-G-X-2-2-2-17-F-A12125-AMW-EB2-120

This model number is for a 2' x 2' fixture (i.e., the existing ceiling grid) with two T8 lamps, 0.125-inch-thick acrylic shield, and antimicrobial finish. The "8" in T8 indicates eight eighths of an inch or a one-inch diameter. See the following provided in the Light Fixture Diagrams resource:

50 = Air Troffer G = Ceiling Type (grid)X = Air Function2 = Nominal Width (2')2 = Nominal Length (2') 2 = Total Lamps 17 = Lamp Watts/Type (17 watt, T8) F = Door Frame Type A12125 = Shielding (0.125" thick acrylic) AMW = Options (antimicrobial white) EB2 = Ballast Type 120 = Voltage

CASE STUDY RESOURCES USED Scenario **Light Fixture Diagrams**

Section: Building Systems, Materials, & Assemblies

Ouestion 85

TABLE 705.5 FIRE-RESISTANCE RATING REQUIREMENTS FOR EXTERIOR WALLS BASED ON FIRE SEPARATION DISTANCE^{3, 4, g}

FIRE SEPARATION DISTANCE = X (feet)	TYPE OF CONSTRUCTION	OCCUPANCY GROUP H	OCCUPANCY GROUP F-1, M, S-1	OCCUPANCY GROUP A, B, E, F-2, I, R ⁱ , S-2, U ^h
X < 5 ^b	All	3	2	1
$5 \le X \le 10$	IA, IVA	3	2	1
	Others	2	1	1
$10 \le X \le 30$	IA, IB, IVA, IVB	2	1	1°
	IIB, VB	1	0	0
	Others	1	1	1°
$X \ge 30$	All	0	0	0

For SI: 1 foot = 304.8 mm. a. Load-bearing exterior walls shall also comply with the fire-resistance rating requirements of Table 601. b. See Section 706.1.1 for party walls. c. Open parking garages complying with Section 406 shall not be required to have a fire-resistance rating. d. The fire-resistance rating of an exterior wall is determined based upon the fire separation distance of the exterior wall and the story in which the wall is leaved.

Increase. e. For special requirements for Group H occupancies, see Section 415.6. f. For special requirements for Group S aircraft hangars, see Section 412.3.1. g. Where Table 705.8 permits nonbearing exterior walls with unlimited area of unprotected openings, the required fire-resistance rating for the exterior walls is 0 hourse.

is 0 hours

h. For a building containing only a Group U occupancy private garage or carport, the exterior wall shall not be required to have a fire-resistance rating where the fire separation distance is 5 feet (1523 mm) or greater.

i. For a Group R-3 building of Type II-B or Type V-B construction, the exterior wall shall not be required to have a fire-resistance rating where the fire sepa-ration distance is 5 feet (1523 mm) or greater.

Refer to the exhibit.

During design development, the owner decides to attach a new 12' x 60' motor vehicle repair garage to the north side of the Existing Auto Repair Building. The existing north wall must remain.

Assuming Type II-B construction, which exterior wall rating is required for the three new walls of the addition?

A. 0-hour exterior wall rating

- B. 1/2-hour exterior wall rating
- C. 1-hour exterior wall rating
- D. 2-hour exterior wall rating

Correct answer: A

CORRECT RESPONSE

0-hour exterior wall rating

According to IBC Section 311.2, the repair garage area is an S-1 occupancy. IBC Table 705.5 stipulates that exterior walls for a Type II-B building with an S-1 occupancy that are greater than 10 feet and less than 30 feet away from the property line need a 0-hour fire rating for exterior walls. According to the Existing Building Drawings, the existing north wall of the Auto Repair Building is 33 feet from the property line, so the addition of a 12-foot repair garage will place the new exterior wall 21 feet from the property line, which is greater than 10 feet and less than 30 feet from the property line. The new exterior wall will also meet the 20-foot side-yard setback requirement stipulated in the Zoning Ordinance resource.

CASE STUDY RESOURCES USED Scenario IBC Excerpts Existing Building Drawings Zoning Ordinance

Section: Codes & Regulations

Question 86

A structural engineering consultant reviews the existing auto repair building and determines that due to the large openings in the east and west walls, lateral bracing is needed at the High Bay Area of the plan. The architect wants to choose the lateral system that is most appropriate for the size and structure of the repair bays.

Which one of the following lateral systems should the architect choose?

A. Cross-braced frame

- B. Shear wall
- C. Rigid frame

Correct answer: C

CORRECT RESPONSE Rigid frame Rigid frames allow for the large openings within each bay to remain intact.

CASE STUDY RESOURCES USED Scenario Existing Building Drawings

Section: Building Systems, Materials, & Assemblies

Question 87

The client wants to maintain existing restrooms and all floor finishes for the new car dealership while also meeting ADA requirements. However, the tile and mortar bed in the restroom is 3/4" higher than the lobby's exposed concrete, and there is currently no floor transition installed between the concrete and tile. The modification of existing finish systems is prohibited.

Click on the option in the array to indicate the most appropriate solution.

Correct answer:

CORRECT RESPONSE Option B

Option B meets the ADA standard for threshold changes in levels and will not require demolition.

CASE STUDY RESOURCES USED Scenario ADA Standards Excerpts

Section: Codes & Regulations

Question 88

Refer to the exhibit.

The client wants to expand the Existing Building in order to double the size of the future Automobile Showroom. The expansion should be contiguous with the Automobile Showroom.

Which location on the site plan is the most appropriate area for the expansion?

A. A

- В. В
- C. C
- D. D

Correct answer: D

<u>CORRECT RESPONSE</u> D

The Expansion Footprint needs to be to the east of the Existing Building because the Scenario indicates that the Automobile Showroom is planned for the northern half of the building where the High Bays are currently, according to the Existing Building Drawings, and the

expansion should be contiguous with the Showroom. Locations A, B, and C violate the setback requirements stipulated in the Zoning Ordinance resource.

CASE STUDY RESOURCES USED Scenario Existing Building Drawings Zoning Ordinance

Section: Project Integration of Program & Systems

Question 89

The client wants the architect to add overflow parking to the new auto dealership. The dealership property line where the overflow parking will be placed abuts a residential zoning district.

Which of the following site improvements will be required? Check the three that apply.

- A. Gravel paving
- B. Stormwater runoff facilities
- C. 6-foot-tall sight obstructing fence
- D. 30-foot-minimum asphalt driveway
- E. Striping for the parking spaces and lanes
- F. Parking spaces located outside of the setbacks

Correct answer: BCF

CORRECT RESPONSES

Stormwater runoff facilities

The Zoning Ordinance resource stipulates that overflow parking areas must provide stormwater runoff facilities approved by the public works department.

6-foot-tall sight obstructing fence

The Zoning Ordinance resource stipulates that if an overflow parking area abuts a residentially zoned property line, then the overflow parking area must include landscaping or a six-foot-tall sight obstructing fence.

Parking spaces located outside of the setbacks

The Zoning Ordinance resource stipulates that if an overflow parking area abuts a residentially zoned property line, then it also must be sure not to include any parking spaces within setbacks that adjoin the residential zone.

CASE STUDY RESOURCES USED Scenario

Zoning Ordinance

Section: Codes & Regulations

Question 90

 Site Utilities Legend

 --- W - - - Domestic water

 -- UGE - - - - Power (underground)

 -- G - - - - Gas

 --- SAS - - - Storm drain

Refer to the exhibit.

The design team is developing a preliminary site plan. The architect meets a representative from the local power company at the project site to determine the location for a new transformer to serve the auto dealership and showroom. The new transformer must be located according to the following requirements:

- Minimize the length of high voltage cable on the property.
- Retain the current electrical room location in the Existing Auto Repair Shop building.
- Retain the current parking layout and vehicle circulation.

Click on the area of the site plan to indicate the appropriate location for the pad-mounted exterior transformer.

Correct answer:

CORRECT RESPONSE

Area between the western property line and the New Auto Dealership and Showroom

A pad-mounted exterior transformer steps-down high voltage distribution to a lower voltage to serve the building. The underground power line (UGE) shown on this plan is the high voltage distribution line. To minimize the length of high voltage cable on the property, the transformer should be placed on the west side of the property, near the high voltage (UGE) line. The length of the cable from the transformer to the main distribution panel in the existing electrical room must also be minimized. The floor plan in the Existing Building Drawings resource indicates that the electrical room is on the west side of the building, about 35 feet from the south exterior wall. The area on the site plan that meets the priorities, then, is near the UGE line, and aligned with the existing electrical room.

CASE STUDY RESOURCES USED Scenario

Existing Building Drawings

Section: Project Integration of Program & Systems

Question 91

The contractor for the future dealership and showroom asks for a wall type that does not require resilient channels (RC). The owner needs a minimum STC rating of 57 for acoustical separation between the Garage and Office areas.

Which one of the following wall assemblies should the architect specify?

- A. UL407
- B. UL419
- C. UL454
- D. UL484

Correct answer: D

CORRECT RESPONSE UL484

The highest STC rating available for this wall assembly is 58, which meets the owner's minimum requirement of 57, and the wall assembly has no resilient channels, which satisfies the contractor's request.

CASE STUDY RESOURCES USED Scenario Wall Assemblies

Section: Building Systems, Materials, & Assemblies

Question 92

As part of the conversion of the Historic Church Building to a performing arts space, a new mechanical system is proposed. The following costs are associated with the Church's existing and proposed mechanical systems:

- Annual operations and maintenance cost of existing mechanical system: \$3.75 per square foot
- Annual operations and maintenance cost of proposed mechanical system: \$2.25 per square foot
- Initial cost of proposed mechanical system: \$25.00 per square foot

How many years will it take for the proposed system to show cost savings over the existing system? Round to the nearest year.

- A. 14 years
- B. 17 years
- C. 20 years

Correct answer: B

CORRECT RESPONSE 17 years

CALCULATIONS

1. Initial cost of the proposed system: 12,500 sf (square footage of Historic Church Building) x \$25 (initial cost per sf for proposed system) = \$312,500

2. Annual operation and maintenance costs of proposed system: 12,500 sf x \$2.25 (operation and maintenance cost per sf for proposed system) = \$28,125

3. Total costs for proposed system: \$312,500 + \$28,125 = \$340,625

4. Annual operation and maintenance costs of existing system: 12,500 sf x \$3.75 (operation and maintenance cost per sf for existing system) = \$46,875

5. Difference in operation and maintenance costs between the proposed and existing system: \$46,875 - \$28,125 = \$18,750

6. Years for the proposed system to show cost savings: \$312,500 (initial cost of the proposed system) / \$18,750 (cost savings per year) = 16.67 years (rounded to 17)

CASE STUDY RESOURCES USED

Section: Project Costs & Budgeting

Question 93

The developer wants the dance studios in the performing arts center to be placed in a location where they will receive indirect natural light.

Which one of the following locations is most appropriate for the dance studios?

- A. On the ground floor with exposure to Avenue A.
- B. On the ground floor with exposure to Avenue B.
- C. On the fourth floor with exposure to Avenue A.
- D. On the fourth floor with exposure to Avenue B.

Correct answer: D

CORRECT RESPONSE

On the fourth floor with exposure to Avenue B.

Exposure to Avenue B means exposure to the north, where the dance studios will receive indirect light. Additionally, by placing the dance studios on the fourth floor, they will be in position to avoid shadows from adjacent buildings.

CASE STUDY RESOURCES USED Scenario Site Plan

Section: Project Integration of Program & Systems

Question 94

The owner asks the architect to consider an exposed wood structure with no internal columns for the Proposed Gallery.

Which one of the following systems is most appropriate?

- A. Gang-nail trusses with plywood decking
- B. Composite I-joists with plywood decking
- C. Glulam beams with T&G wood decking
- D. Heavy timber with T&G wood decking

Correct answer: C

CORRECT RESPONSE

Glulam beams with T&G wood decking

Deep glulam sections are capable of very long spans and are appropriate for an exposed structure.

CASE STUDY RESOURCES USED Scenario Site Plan

Section: Building Systems, Materials, & Assemblies

Question 95

The existing historic church building has a net usable area of 10,000 square feet. The developer asks the architect to keep 90% of the space available for chairs-only seating, which can be rearranged in different configurations. The remaining 10% will accommodate mechanical and storage spaces which are accessory to assembly occupancy and are excluded from the net square footage occupancy calculation.

During the renovations, all of the mechanical, plumbing, electrical, and sprinkler systems will be upgraded to serve the new use classifications.

What is the total minimum required capacity of the means of egress components?

A. 192 inches

B. 193 inches

C. 194 inches

Correct answer: B

CORRECT RESPONSE 193 inches

CALCULATIONS

1. 10,000 square feet x 90% = 9,000 square feet of assembly space

- 2. 10,000 square feet x 10% = 1,000 square feet of mechanical and storage spaces excluded from occupancy calculation
- 3. 9,000 square feet / 7 (occupant load factor) = 1,285.71 occupants (rounds up to 1,286)
- 4. 1,286 occupants x 0.15 inches per occupant = 192.9 inches (rounds up to 193)

CASE STUDY RESOURCES USED Scenario IBC Excerpts

Section: Codes & Regulations

Question 96

The developer asks the architecture firm to provide indirect natural light to the Gallery. The developer's requirements should still be met, and the light should provide even illumination.

Which design option should the firm choose?

- A. Full-height curtainwall adjacent to the Existing School.
- B. Series of clerestory windows oriented toward the Existing Church.
- C. Series of clerestory windows oriented toward the Proposed Parking Garage.

Correct answer: C

CORRECT RESPONSE

Series of clerestory windows oriented toward the Proposed Parking Garage. Clerestory windows oriented toward the Proposed Parking Garage, which is to the north, would accommodate even, indirect illumination.

CASE STUDY RESOURCES USED Scenario Site Plan

Section: Environmental Conditions & Context

Question 97

Click on the area of the site plan where 1-hour occupancy separation is required due to the Gallery adjacency. Assume no fire suppression systems are installed.

Correct answer:

CORRECT RESPONSE

The area between the Proposed Gallery and the Proposed Parking Garage

The Gallery has a non-sprinklered A occupancy and the Parking Garage has a S-2 occupancy. According to IBC Table 508.4, the separation between non-sprinklered A and S-2 occupancies must be 1-hour-rated.

CASE STUDY RESOURCES USED Scenario IBC Excerpts

Section: Codes & Regulations

Question 98

The proposed gallery has connections to four different structures. The architect needs to determine occupancy separations for the building connections and notes the parking garage is not sprinklered and the performing arts center is classified as business occupancy.

Click on the building connection that does not require an occupancy separation based on occupancy use type.

Correct answer:

CORRECT RESPONSE

Connection between the Proposed Gallery and the Church

The Church (Occupancy Type A) is the only connection to the Proposed Gallery (Occupancy Type A) that is the same occupancy and, according to IBC Table 508.4, it does not require a separation of occupancy.

CASE STUDY RESOURCES USED

Scenario IBC Excerpts

Section: Codes & Regulations

Question 99

The housing portion of the mixed-use office and housing facility is to include 48 dwelling units that consist of the following:

- 16 two-bedroom units
- 32 one-bedroom units

How many parking spaces will be required for the mixed-use office and housing facility?

- A. 64 parking spaces
- B. 82 parking spaces
- C. 130 parking spaces
- D. 146 parking spaces

Correct answer: D

CORRECT RESPONSE

146 parking spaces

CALCULATIONS

1. Number of parking spaces required for the offices: 24,600 square feet (area of the offices) / 300 (square footage per parking space) = 82 parking spaces

2. Number of parking spaces required for the two-bedroom units: 16 (number of two-bedroom units) x 2 (number of parking spaces per two-bedroom unit) = 32 parking spaces

3. Number of parking spaces required for the one-bedroom units: 32 (number of one-bedroom units) x 1 (number of parking spaces per one-bedroom unit) = 32 parking spaces

4. Total number of parking spaces required: 82 + 32 + 32 = 146

CASE STUDY RESOURCES USED Scenario Zoning Ordinance

Section: Codes & Regulations

Question 100

The architecture firm is determining the off-street parking capacity for the market-rate housing, which will consist of seven two-bedroom units per floor.

How many off street parking spaces are required for the market rate housing?

- A. 28 spaces
- B. 56 spaces
- C. 112 spaces

Correct answer: B

CORRECT RESPONSE

56 spaces

The parking spaces needed are determined by the number of bedrooms, and the Zoning Ordinance resource provides the number of spaces needed per bedroom.

CALCULATIONS

1. Determine number of two-bedroom apartment units: 7 units x 4 floors = 28 units

- 2. Determine total number of bedrooms: 28 units x 2 bedrooms per unit = 56 bedrooms
- 3. Determine number of spaces for market-rate housing: 56 bedrooms x 1 space per bedroom = 56 parking spaces

CASE STUDY RESOURCES USED Scenario

Zoning Ordinance

Section: Codes & Regulations

Testing Resources

For more information on test preparation references and resources, as well as testing policies and procedures, please refer to the ARE 5.0 Guidelines, available on <u>ncarb.org</u>.